Blistering of FRP boat hull due to osmosis
Marine Application - Osmosis

Osmosis phenomenon starts with water diffusion into FRP

- Polarity matrix
- Amount and type of ester linkages
- Tg of cured matrix (cross link density)
Marine Application - Osmosis

Diffusion
Water will fill voids in FRP and low molecular weight materials will dissolve in water phase

Osmosis
Due to difference in concentration in water of soluble materials, extra water will move from outside to the void resulting in build up of osmotic pressure.

Flexilibity
When osmotic pressure exceeds flexibility properties of resin matrix a crack is initiated and blister will start to grow.
Marine market - Hydrolysis resistance - the Ester Linkage

\[
R - \overset{\text{C}}{-\overset{\text{C}}{\text{O}}} - \overset{\text{C}}{-\overset{\text{O}}{\text{C}} - \overset{\text{C}}{\text{O}}} \quad \text{H}_2\text{O}
\]

\[
\overset{\text{CH}_3}{-\overset{\text{C}}{-\overset{\text{C}}{\text{O}}} - \overset{\text{C}}{-\overset{\text{O}}{\text{C}} - \overset{\text{C}}{\text{O}}} \quad \text{H}_2\text{O}
\]

\[
\overset{\text{H}}{-\overset{\text{C}}{-\overset{\text{C}}{\text{O}}} - \overset{\text{C}}{-\overset{\text{O}}{\text{C}} - \overset{\text{C}}{\text{O}}} \quad \text{H}_2\text{O}
\]

\[
\overset{\text{H}}{-\overset{\text{C}}{-\overset{\text{C}}{\text{O}}} - \overset{\text{C}}{-\overset{\text{O}}{\text{C}} - \overset{\text{C}}{\text{O}}} \quad \text{H}_2\text{O}
\]

DSM Composite Resins
Marine Application – How to prevent blistering

- Parameters osmosis
 - Gelcoat
 - tiecoat
 - Resin matrix
 - Glass fibres
 - Cure system
 - Cure temperature
 - Processing
Gel coat

- **Good hydrolysis resistance:**

 \[\text{VE} > \text{ISO/NPG} > \text{ISO/PG} > \text{ISO/Standard glycols} > \text{OPA/Standard glycols} \]

- No / low fillers / type of fillers

- Special types of pigments:

 - No influence of hydrolysis resin matrix
 - No influence on cure
 - Only based on unsaturated polyester paste resins

- **Processing**

 - Layer thickness between 0.4 - 0.75 mm
 - Geltime on mould ± 20 minutes
 - Void free
 - Prevent styrene inhibition (ventilate!)
DSM Gelcoat range for Marine

<table>
<thead>
<tr>
<th>Resin type</th>
<th>processing</th>
<th>colour</th>
<th>application</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neogel NPG 8373</td>
<td>ISO-NPG</td>
<td>Spray</td>
<td>unlimited</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Boat, swimming pools</td>
</tr>
<tr>
<td>Neogel NPG 8375</td>
<td>ISO-NPG</td>
<td>Brush / roller</td>
<td>unlimited</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Boat, swimming pools</td>
</tr>
<tr>
<td>Neogel ECO NPG 9373</td>
<td>ISO-NPG</td>
<td>Spray</td>
<td>Light colours</td>
</tr>
<tr>
<td></td>
<td>low VOC</td>
<td></td>
<td>Low emission for marine</td>
</tr>
<tr>
<td>Neogel ECO NPG 9375</td>
<td>ISO-NPG</td>
<td>Brush / roller</td>
<td>Light colours</td>
</tr>
<tr>
<td></td>
<td>Low VOC</td>
<td></td>
<td>Low emission for marine</td>
</tr>
</tbody>
</table>
Tiecoat

- Additional resin rich layer, acting as water barrier and adhesion layer between gelcoat and structural layer

- Properties
 - Glass content: Low
 - Fast wetting characteristic
 - Low water absorption value
 - High mechanical performance

- State of the art: Atlac 580 ACT
 - Vinyl ester urethane resin
 - Maximum water absorption: 0.6%
 - High mechanics
 - Tensile strength: 85 MPa
 - Elongation at break at full post cure: 4.2%

Excellent osmosis and water resistance
Comparison of resin systems to resist osmotic blistering
(time to onset of blistering using accelerated test QCT at 60°C)

System 1:
- Iso/npg gelcoat, cured thickness 0.4 mm
- **Ortho-resin** in buffer-laminate 1x450 g/m²
- Ortho-resin in structural laminate 2x450 g/m²

System 2:
- Iso/npg gelcoat, cured thickness 0.4 mm
- **Iso-resin** in buffer-laminate 1x450 g/m²
- Ortho-resin in structural laminate 2x450 g/m²

System 3:
- Iso/npg gelcoat, cured thickness 0.4 mm
- **Atlac 580 ACT** buffer-laminate 1x450 g/m²
- Ortho-resin structural laminate 2x450 g/m²
DSM tiecoat resins

<table>
<thead>
<tr>
<th></th>
<th>STATE OF THE ART</th>
<th>LOW VOC Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Atlac 580 ACT</td>
<td>Atlac E-Nova MA6325</td>
</tr>
<tr>
<td></td>
<td>Vinyl ester urethane resin</td>
<td>High solid vinyl ester modified resin</td>
</tr>
<tr>
<td>solid content (%)</td>
<td>50 - 52</td>
<td>65 - 67</td>
</tr>
<tr>
<td>Water absorption (%)</td>
<td>0.6</td>
<td>1.4</td>
</tr>
<tr>
<td>*60 days at 60°C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>tensile strength (Mpa)</td>
<td>83</td>
<td>70</td>
</tr>
<tr>
<td>Elongation at break (%)</td>
<td>4.2</td>
<td>2 - 3</td>
</tr>
</tbody>
</table>
Marine Application - Processing

• Workshop
 - Temperature > 20°C
 - Relative humidity as low as possible (the lower the better)
 - Resins, glass, equipment, tools and moulds have to be conditioned to workshop temperature.

• Moulds/tools
 - Clean and free from dust and condense

• Lossing agent
 - Wax -> not too thick layers, well polished
 - Polyvinyl alcohol -> well dried
 (in both cases ‘when not’, agent will dissolve in curing resin matrix, resulting in reduction of properties)
Marine Application – Structural resins for hulls and decks

Resins for Open-mold applications:
hand lay up and spray up represent more than 95% of the volume of resin processed in boat building industry.

Resins for Closed-mold applications:
Vacuum injection, Light RTM, RTM represent less than 5% of the volume of resin processed in boat building industry.

➢ Both technologies have their own advantages and limits and consequently require different products and know-how.
Ortho resins

Synolite 0188 series
- Thixo and preaccelerated
- Colour change indicator
- Low exotherme
- Good workability
- Structural parts of boats

Synolite 1408 series
- Thixo and preaccelerated
- Promoted
- Colour change indicator
- Low exotherme
- Good workability
- LSE
ISO resins

Synolite 0280 and 0288 series

- Thixo and preaccelerated.
- Low exotherm.
- Good workability.
- Structural parts of boats.
HLU / SU applications

DCPD resins

- Low styrene content (36% for 44% in ortho resins)
- Low viscosity → low fibre print through
- Low styrene emission in dynamic phase

8388 series

- Thixo and preaccelerated
- Colour change indicator
- Low to medium exotherm
- Good workability
- L.S.E available
- Structural parts of boats
HLU / SU applications

<table>
<thead>
<tr>
<th>Resin</th>
<th>type</th>
<th>Thix</th>
<th>Peak exo</th>
<th>Approval</th>
<th>Colour Change indicator</th>
</tr>
</thead>
<tbody>
<tr>
<td>0188</td>
<td>Ortho</td>
<td>Yes</td>
<td>Low (110)</td>
<td>Lloyds, Rina, DNV</td>
<td>Yes</td>
</tr>
<tr>
<td>1408</td>
<td>Ortho</td>
<td>Yes</td>
<td>Low (80)</td>
<td>DNV</td>
<td>Yes</td>
</tr>
<tr>
<td>8388</td>
<td>DCPD</td>
<td>yes</td>
<td>Medium (130)</td>
<td>Lloyds, Rina</td>
<td>Yes</td>
</tr>
<tr>
<td>0280</td>
<td>Iso</td>
<td>yes</td>
<td>Medium (150)</td>
<td>Rina, DNV</td>
<td>No</td>
</tr>
<tr>
<td>0288</td>
<td>Iso</td>
<td>yes</td>
<td>Low (100)</td>
<td>Lloyds, Rina, DNV</td>
<td>Yes</td>
</tr>
</tbody>
</table>
HLU / SU - System Silver

- Laminate built up for workboats, RIBs, small standard crafts:
 - Iso gel coat (500 micron)
 - Structural layer: Ortho or ISOor Synolite 1573-I-1 or Synolite 1573-P-1

ECONOMY	★★★★★★
PRODUCTIVITY	★★★★★★
WEATHERING	★★★
BLISTER RESISTANCE	★★★
PRINT THROUGH	★★★

DSM Composite Resins
HLU / SU - System **Gold**

- **Laminate built up for medium sized, medium value boats with white gel coat:**
 - 500 micron NPG gel coat: Neogel NPG 8373/8375
 - Iso Synolite 0280/288 tiecoat – 2x 300 g/m² p.b. CSM
 - Ortho or Iso for structural layer: Synolite 1408-P-1

<table>
<thead>
<tr>
<th>ECONOMY</th>
<th>★ ★ ★ ★ ★</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRODUCTIVITY</td>
<td>★ ★ ★ ★ ★</td>
</tr>
<tr>
<td>WEATHERING</td>
<td>★ ★ ★ ★ ★</td>
</tr>
<tr>
<td>BLISTER RESISTANCE</td>
<td>★ ★ ★ ★ ★</td>
</tr>
<tr>
<td>PRINT THROUGH</td>
<td>★ ★ ★ ★ ★</td>
</tr>
</tbody>
</table>
HLU / SU - System Platinum High surface quality

- Laminate built up for large, high value boats, coloured or white gelcoat, permanently afloat and/or in hot humid climates:
 - 500 micron NPG gel coat: Neogel NPG 8373/8375 or Neogel ECO 9373/9375
 - Atlac 580 ACT tiecoat – 2x 300 g/m² p.b. CSM
 - DCPD for structural layer: Synolite 8388-P-1

<table>
<thead>
<tr>
<th>ECONOMY</th>
<th>~ ~ ~ ~ ~</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRODUCTIVITY</td>
<td>~ ~ ~ ~</td>
</tr>
<tr>
<td>WEATHERING</td>
<td>~ ~ ~ ~</td>
</tr>
<tr>
<td>BLISTER RESISTANCE</td>
<td>~ ~ ~ ~</td>
</tr>
<tr>
<td>PRINT THROUGH</td>
<td>~ ~ ~ ~</td>
</tr>
</tbody>
</table>
Typical time intervals between layers

- Gel coat – constructive layers: 2-24 hrs
- Gel coat – tie coat: 2-24 hrs
- Gel coat – Barrier (spray) coat: 1-24 hrs
- Tie coat – constructive layers: 16 hrs – 1 week
- Barrier (spray) coat – constructive layers: 16 hrs – 1 week

- In general: Longer time intervals = better surface quality
 (However, risk for bad secondary bonding at some surfaces)